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4d SQCD vs 2d sigma 
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Brane construction
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Figure 3: The brane conÞguration forU(N ) gauge theory withN + M hypermultiplets,
and k vortices.

shown in Figure 3.

Once again, it is a simple matter to read o! the theory on the k D1-branes [17].
It consists of aU(k) Þeld theory, still coupled to the chiral multiplets Z and ! as in
Section 3, but now augmented withM further chiral multiplets ÷! which transform in
the øk representation of the gauge group. We shall write,

÷! = ÷! w
m m = 1, . . . , k ; w = 1, . . . , M

These Þelds also transform under their ownU(M )E ßavour symmetry, so the full global
symmetry group of the theory is therefore

G = SU(2)R ! S(U(N )D ! U(M )E ) ! U(1)F

where the overallU(1) of the U(N )D ! U(M )E ßavour symmetry lies in theU(k) gauge
group.

As in Section 3, we are interested in the Higgs branch of the D1-brane theory, which
we denote as öM k,(N,M ). This Higgs branch is expected to be isomorphic to the vortex
moduli space,

öVk,(N,M )
"= öM k,(N,M ).

Let us examine the Higgs branch in more detail. It is given by aU(k) quotient of
Ck(N + M + k) , parameterised byZ , ! and ÷! . The D-term moment map is
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[Hanany Tong]

take k=1to get U(1) theory on D1 (semi-
local vortex)

Ñ

will refer to as HT model

|Qi |2 ! | ÷Qj |2 = r

D-term 

FI term -- separation of NS5s in x6
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ConÞned monopoles
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Figure 2: Various regimes for the monopoles and ßux tubes in the simplest case of two ßavors.

down to U(1)(N ! 1) by a VEV of the SU(N ) adjoint scalar

!ak
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1
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Thus, there are Õt HooftÐPolyakov monopoles embedded in thebroken gauge
SU(N ). Classically, on the Coulomb branch the masses of (N # 1) elementary
monopoles are proportional to

|(MA # MA+1 ) |/g 2
2

This is shown in the upper left corner of Fig. 2 for the case

N = 2 , ! m % M1 # M2 .

In the limit ( MA # MA+1 ) & 0 the monopoles tend to become massless, for-
mally, in the classical approximation. Simultaneously their size become inÞnite
[28]. The mass and size are stabilized by conÞnement e" ects which are highly
quantum. The conÞnement of monopoles occurs in the Higgs phase, at " '= 0.

¥ Now we introduce the FI parameter" which triggers the squark condensation.
The theory is in the Higgs phase. We still keepN = 2 breaking parametersh
and µÕs vanishing,

µ1 = µ2 = 0, h = 0, " '= 0, M '= 0. (6.4)
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Hanany-Tong model as U(1) GLSM

On Weighted Nonlinear Sigma Models

Abstract

Sigma models on non-compact target spaces have a number of interest-
ing properties which their compact counterparts (e.g.CPN , O(N )) do
not possess. We discuss perturbative aspects of these models.

1 Introduction
Sec:Intro

2 From the Hanany-Tong model to the ZN model
Sec:HananyTongModel

The U(Nc) SQCD with Nf ßavors is known to have semi-local string solutions [
Shifman:2006kd
1]. According

to Hanany and Tong conjecture [
Hanany:2003hp
2] the low energy e! ective theory on the worldsheet of the

string is given by the strong coupling limite ! " of the two-dimensionalU(1) gauge theory
with the following Lagrangian
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where# is the Þeld strength for the vector multipletV and ÷N = Nf # Nc. Matter superÞelds
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Note that the Fayet-Illiopolous (FI) parameter r in (
eq:LagrWeightedSigmaeq:LagrWeightedSigma
2.1) can have di! erent signs, as was

shown by Witten [
Witten:1993yc
3], interpolation between the regions with di! erent values ofr corresponds

to transition between Calabi-Yau and Landau-Ginzburg sigma models. Also physics of the
model depends on the relationship betweenNc and ÷N , to ensure

1
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perturbation theory is subtle

r > 0. Small |M| expansion gives
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Let us stress our attention on change of variables (
eq:MesonChangeeq:MesonChange
2.9). Large values of the FI parameter

r = 4!
g2 correspond to small values of the meson ÞeldM , which means that small|M| 2

expansion of the Hanani-Tong model is essentially semi-classical expansion. From the other
hand we see that this limit leads to the ZN model. It suggests that perturbative sectors
of these two models are the same. We shall discuss perturbation theory of these models in
more detail in the next section.

3 Perturbation Theory

For any K¬ahler nonlinear sigma model with K¬ahler metricgi ø" and coupling constantg the
Gel-Mann-Low function readscite

" i ø" = a(1) Ri ø" + g2a(2) R(2)
i ø" + g4a(4) R(4)

i ø" . . . , (3.1) eq:PertSeries

wherea(i ) are some constants andR(i ) are operators composed fromi-th power of curvature
tensors. For a general metric the form of the Þrst several coe! cients is knowncite. Let us
Þrst focus on the one-loop calculation. Due to supersymmetry we haver = 4#/g 2.

General lore of the perturbation theory in nonlinear sigma models suggests that the
theory is non-renormalizable as each order in the perturbation series (

eq:PertSerieseq:PertSeries
3.1) brings a new

irrelevant operator. In some symmetric cases, like Grasmanians,other? which? Einstein
manofolds? no other structures are produced Ð the renormalization is merely reduced to a
single coupling constant renormalization. It is easy to see that the weighted projected space
WCPN, ÷N is of the Þrst kind Ð all terms in the series (

eq:PertSerieseq:PertSeries
3.1) have di" erent Þeld dependence.

Let us however recall that the perturbation theory is valid only for larger (small g), so it is
instructive to look at each term in (

eq:PertSerieseq:PertSeries
3.1) after expanding them in larger .

We can calculate for theZN model
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Comparing with (
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however there are nonperturbative corrections

One loop twisted effective superpotential is exact in (2,2)
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Heterotic deformation



(0,2) Theory
In 4d introduce masses 
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(0,2) GLSM
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Large-N solution of (0,2)
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Vacuum equations



Solution of (2,2) model
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Spectrum
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Photon becomes massless in Cs phase!!

Note that Lambda vacua disappear at  large deformations
Need to sit in zero-vacua

e.g. in Cm phase

Massless goldstino in fermionic sector

[Bolokhov Shifman Yung]
[PK Monin Vinci]

Confinement!



Conclusions and open questions
¥Study BPS (and beyond) spectrum of SQCD can 

effectively be done using 2d NLSM (and GLSM)

¥Rich variety of phases in (0,2) model at strong 
coupling

¥Other heterotic deformations

¥Are there ßux tubes in theories without FI term? 
(e.g. SU(N)) Omega deformed 4d theory may have 
such solutions...

¥Connections to integrable systems in 2d...

¥Relationship w/ another 4d/2d duality [Vafa et al]

øD ! + ! øD ! !


